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Problems of laminar heat transfer associated with pipeline transport of oil under laminar 
flow conditions are solved by a relatively new numerical technique. This technique accom- 
modates for the peculiarity of the domain of solution (one dimension, the axial, even when it 
is non-dimensionalized, is far more extended than the other two) and exhibits remarkable 
features in terms of computational economy, stability and accuracy. 

The main interest in this paper is the adaptation of the method to problems with different 
boundary conditions approximating real pipelines (offshore, insulated, buried). 

The problem of determining the power requirements in a pipeline operating under 
non-isothermal conditions is tied to the problem of determining the heat transfer 
from/to the pipeline. There are three ‘important aspects in laminar heat transfer 
problems in pipelines: 

1. Realistic thermal boundary conditions (offshore, insulated, buried, arctic 
pipelines); 

2. Markedly varying with temperature physical properties of the oil (viscosity); 
and 

3. Significant free convection, comparable to forced convection under special 
conditions (non-insulated offshore pipelines). 

The above aspects individually or combined render the solution to the equations 
governing laminar heat transfer to be numerical [ 11. 

In laminar flows, in the absence of significant mixing, steep changes in physical 
properties and field variables are realized over the pipeline cross section. Accurate 
determination of heat transfer and pressure in pipelines is subject to accurate deter- 
mination of the steep gradients of the field variables in the wall region. To accom- 
modate for this, finite difference and finite element schemes employ finer grids as the 
pipe wall is approached. The use of non-uniform grids in some methods is not free of 
problems [ 21. 

Finally, the domain of solution for heat transfer problems in pipelines is peculiar. 
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One of the dimensions (axial) is far more extended than the others. This presents a 
challenge to numerical schemes in terms of computational economy, stability and 
accuracy. 

The pseudospectral method, developed by Orszag and his co-workers [3-S], is 
basically a method of numerically solving partial differential equations by use of the 
finite (Fast) Fourier Transform. This seems reasonable for problems with periodic 
boundary conditions but not for the problems discussed here, for which general type 
boundary conditions apply. 

In this paper, we address the adaptation of the method to laminar heat transfer 
problems relevant to oil pipelines with different types of boundary conditions. 

HEAT TRANSFER PROBLEMS 

Since the interest in this paper is the adaptation of the numerical method to 
different thermal boundary conditions, we chose to solve the problem of thermally 
developing laminar forced convection with 

1. Constant wall temperature (classical Greatz problem; Dirchlet boundary 
condition); 

2. Constant wall heat flux (Neumann boundary condition); and 
3. A linear combination of the temperature and its derivative specified at the 

wall (mixed boundary condition). 

The constant wall temperature approximates the thermal boundary condition for an 
offshore pipeline. The constant wall heat flux condition approximates, under certain 
conditions, the insulated pipe. Finally, the mixed condition describes a buried pipeline 
if the physical properties of the ground in which the pipeline is buried can be 
assumed approximately constant. 

For these three problems the governing equation is 

where K is the thermal diffusivity and u, follows a Poiseuille distribution. The initial 
condition for all three problems is 

z = 0, T= To. (2) 

The boundary condition at the centerline is that of symmetry 

r = 0, aT/ar = 0. (3) 

At the pipe wall, we have either 

r=R, T= T, (44 
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OT 

r=R, -k aT/& = q, (4b) 

or 

r=R, -k i?T/& = h(T - T,) (4c) 

(k, T,,,, T,, qw and h are constants: k is the thermal conductivity of the fluid, T, the 
temperature of the pipe wall, T, the ground temperature and q, is the wall heat 
transfer rate). For all three problems, the derivatives in the radial direction appearing 
in the right-hand side of Eq. (1) are calulated from finite expansions of the 
temperature in terms of Chebyshev polynomials with the temperature calculated at 
the extrema of the highest (Nth) order polynomial. With this selection of grid points, 
the Chebyshev polynomial expansions reduce to Fourier cosine expansions. The fact 
that Chebyshev polynomial expansions are appropriate for the three problems can be 
shown as follows. The boundary conditions for these problems can be represented as: 

x=-l, a,F+a,dF/dx=O 

x= 1, a3 F + a4 dF/dx = 0. 

If we consider a finite expansion of F of the form 

(54 

(5b) 

F(x)= 5 w,(x) 
n>4 

(6) 

where 

4 - Tzn+, -2T,,-, 2n+1- + Tzn-3 - T, + T,, n>2 (74 

q2,, = T,, - 2T2,-, + T,,-, - 2T, i- W,, n > 2, (7b) 

since 

the boundary conditions (5a) and (5b) are automatically satisfied. Furthermore, the 
expansion of Eq. (6) reduces to an expansion of the form 

F(x) = i b, T,(x) 
n=o 

N/2 
b, = a, + 2 c a2,, 

n=2 

N/2-I 

b,=a,+ 1 a,,,, 
n=2 

(9) 

(104 

(lob) 
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N/2 
b2=a6- 2a,-2 c a2,, 

n=2 

N/Z-l 

b,=-2a,+a,- c a2n+l 
n=2 

(1Oc) 

(104 

and 

b,=a,-2a,+2+a,+,, n ) 4. (104 

The derivatives of F can be calculated by differentiating the expansion (9) term by 
term as 

(cYF/~x),=~~ = ,f b:“T,(x,) 
k=O 

(114 

(c?~F/c~x~)~=~, = 2 bjj’T,(X,) 
k=O 

(1 lb) 

with by’ and br’ determined from the recursive relation 

ck-l k-l 
b(4) _ b(4) k+, = 2kbp-“, k>l (12) 

with co = 2 and ck = 1 for k > 0. 
From the Chebyshev polynomial expansions for the temperature the right-hand 

side of Eq. (1) is computed. A second-order predictor-corrector (Adams-Moulton) 
scheme is used to advance the solution in the axial direction from z to z + AZ (semi- 
discrete approximation). 

The solution to every problem is preceded by proper non-dimensionalization of the 
working variables in the form 

r’ = r/R; z’ = z/(RRePr); 4 = u,l(UJ (13) 

(R is the pipe radius, (U,) is the area-averaged velocity, Re = 2R(U,) p/,u is the 
Reynolds number, Pr = V/K is the Prandtl number), and 

T-T T’=w 
To - Tw 

(144 

(To is the fluid temperature at the entrance) for the constant wall temperature 
problem, 

T’= T-To 
Rqwlk 

(14b) 

for the constant wall heat flux problem and 

T,= T-(T,+adm) 

To-(T,+adm) 
(14c) 
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(a is the geothermal gradient and H is the burial depth) for the buried pipe problem. 
With this non-dimensionalization, Eq. (1) takes the form 

(15) 

Although the right-hand side of Eq. (1) for all these problems is evaluated from the 
same type of expansion, the computational procedure is different for each problem. 
Each problem, then, will be dealt with separately below. 

CONSTANT WALL TEMPERATURE 

The boundary conditions for the constant wall temperature problem are 

r’=O, 
aT’ 
g7= 0 (164 

and 

r’ = 1, T’ = 0. 

For this problem, we define a new variable r” as 

(16b) 

r” = I’ 

y” = -r’ 

for r” E [0, 1 ] 

for r” E [-l,O). 
(17) 

With this definition, the symmetry boundary condition becomes 

T’(-r”) = T’(r”), TN E (0, 1 ] (18a) 

and the boundary condition (16b) reduces to 

r” = f 1, T’ = 0. t18b) 

Expansion of T’ in terms of Chebyshev polynomials, 

T’(ri, Z) = i a,(Z) Tn(ri) (19) 
n=o 

with ri = cos xi/N, reduces to a Fourier cosine series expansion which automatically 
satisfies both boundary conditions (18a) and (18b). 

At r’ = 0, Eq. (15) has a removable singularity. The same equation has a non- 
removable second-order singularity at r’ = 1. However, Eq. (15) need not be used for 
calculation of T’ at r’ = 1, since T’ is specified there by the boundary condition. This 
is not the case for the constant wall heat flux problem. 
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CONSTANT WALL HEAT FLUX 

For this problem, a special procedure is devised to overcome the singularity 
problem in the evaluation of temperature at the wall. Differentiating with respect to I’ 
Eq. (15) together with the initial boundary conditions for the constant wall heat flux 
problem, we obtain 

z’=O, q’=O (214 

z’=O, r’ = 0, q’=O @lb) 

r’= 1, q’ = 1 Plc) 

where 

a7-f 
q/=-F. 

In accordance with the previously outlined procedure the derivatives of q’ in the 
right-hand side of Eq. (20) are evaluated from Chebyshev polynomial expansions of 
q’. The singularity problem has been alleviated since Eq. (20) need not be used at 
r’ = 1 to calculate q’ there. However, the solution of Eq. (20) together with initial 
and boundary conditions (21a)-(21c) yields aP/ar’ and not 7”. An inverse problem 
develops as now, knowing the coefficients in 

N 

az-yar'= c ajtl)~n(r~), 
n=o 

we would like to determine the expansion coefficients in 

T’ = 2 a,T,(r’). 
?I=0 

(22) 

(23) 

The coefficients a, are related to a:’ coefficients through Eq. (12). The latter permits 
evaluation of a, for n = 1,2,..., N. We still need Q, to complete the expansion (23), 
and this is obtained in the following way. 

The dimensionless bulk temperature at any cross section is defined as 

The bulk temperature for the problem of interest reduces to 

T; = 4 
I 

’ ?(l - r’2) r’ dr’ + a, 
0 

(24) 

(25) 
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with p given by 
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(All the coefficients 
expressed in terms 

a, in Eq. (26) can be found.) The integrand of Eq. (25) can be 
of Chebyshev polynomials. If the integrand is represented as 

making use of the properties of the Chebyshev polynomial [6] we have 

I 
r’ F(r’) dr’ = Ni1 c, T,(r’) 

0 il=O 

with 

b, b 
c N-l 

N+l= 2(zv+ 1); CN=F 

cn=&L,-b,+J n = l,..., N - 1 

(28) 

(294 

(29b) 

and 

co=2[c,-c,+*~*+(-1)NCN+,]. PC) 

A macroscopic energy balance for the constant wall heat flux problem yields another 
relation for TL, namely, 

T;, = 42’. (30) 

From Eqs. (25) and (30), a, can be determined. Hence, T’ is completely determined 
from the expansion (23) throughout the domain of solution. 

BURIED PIPE 

The boundary condition at the wall for this problem reduces to 

r’ = 1, c?T’/W = -BT’ 

with 

B= 
k ln[H/R + \/(H/R)* - I] 

(31) 
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(B is the Biot number and k, the thermal conductivity of the soil). This boundary 
condition is provided by the solution of the external buried pipe heat transfer problem 
[7]. Again, T’ is expanded in terms of Chebyshev polynomials and is chosen to be 
evaluated at the extrema of the Nth-order polynomial. The coefficients of the 
expansion are calculated as follows. At each time step, for the interior points 
. . I = l,..., N - 1 (total number of points N + l), we have 

(32) 

The symmetry boundary condition yields 

‘f 
dT”(0) y; 

andr’= a,,+,(-l)k (2k+ l)=O 
n=o 20 

dT,,(O) 
dr’ 

Finally, the wall boundary condition (31) can be written as 

i a -=-B 5 a,T,(l). dTn(l) 
n=O ’ dr’ n=O 

(33) 

(34) 

Equation (34), making use of the properties of the Chebyshev polynomials [6], 
reduces to 

f’ a,(n*-B)=O (35) 
n=O 

dPT,(* 1) P-1 

dxp 
= (fl)k+P n (k* - m2)/(2m + 1) 

m=O 

Equations (32), (33) and (34) constitute a system of N + 1 equations for the coef- 
ficients a, (n = O,..., N). Consequently, the temperature field is evaluated in the 
following way. At each time step we solve the energy equation in the interior of the 
radial domain (0, 1). From the system of Eqs. (32), (33) and (35) the coefficients in 
the expansion are determined. Finally, the temperatures at the centerline and the wall 
are obtained from the expansion (19) for r; = 0 and ri = 1, respectively. 

RESULTS 

From the temperature field the local Nusselt numbers corresponding to these three 
problems were generated according to 

Nu = -2/T/,(i3T’/W),,=, W) 

Nu = 2/(T:, - 42’) (36b) 
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FIG. 1. Nusselt number as a function of position. Constant wall temperature. 

and 

Nu = 2/( rl, - T~)(aT’/ar’),, = , (36~) 

respectively, and Ti defined by Eq. (24). 
The local Nusselt numbers for the constant wall temperature problem (offshore 

pipeline) are shown in Fig. 1. Complete agreement with the values generated from the 
analytical solution [8] is found. For z’ = 0.10 the local Nusselt number approaches 
its asymptotic value 3.66 [9]. 

In Fig. 2, comparison of the local Nusselt numbers from the pseudospectral 

20 
- Analytical solution 

NU 
0 Numerical solution 

10 

0 I I I111111 I I I llllll I I I llllll I I lllll 

10-1 10-3 10-2 10-l 
z' 

FIG. 2. Nusselt number as a function of position. Constant wall heat flux. 
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FIG. 3. Nusselt number as a function of position. Buried pipe. 

solution with their values from the analytical solution [lo] is shown. Again, 
agreement is remarkable. 

the 

The local Nusselt numbers for the buried pipe, for different values of the Biot 
number B, are shown in Fig. 3. As expected, for small B the local Nusselt number 
approaches asymptotically the curve for the constant wall heat flux problem, while 
for large B the local Nusselt number curve approaches asymptotically the curve for 
the constant wall temperature problem. 

The calculations were done on a UNIVAC 1100 machine. We checked for stability 
by repeating part of the calculations for different axial step sizes and number of 
points in the radial direction. This mesh refinement check shows our scheme to be 
numerically stable and convergent. The distribution of the points employed by the 
pseudospectral method becomes denser as the pipe wall is approached. However, this 
does not affect the stability of the method as in finite difference schemes employing 
non-uniform grids [2]. 

The calculations were carried out with fine points in the radial direction. The 
results are obtained with accuracy comparable to that of finite difference calculations 
with approximately 20 points in the radial direction. According to Gottlieb and 
Orszag [5], pseudospectral methods employing N-term expansions achieve accuracy 
comparable to finite difference schemes employing N* grid points. 



424 HATZIAVRAMIDIS AND KU 

CONCLUSIONS 

Laminar freed convection problems associated with long pipelines were solved by 
the pseudospectral method. The main interest in this paper was the adaptation of the 
method for three common types of thermal boundary conditions (Dirichlet, Neumann 
and mixed) which correspond to different types of pipeline environment (offshore, 
insulated, buried). 

The results of the pseudospectral solution compare well with the results of 
previously reported solutions to the problems examined here. 

The method exhibits computational economy features particularly desired in 
calculations of pipelines in which the axial direction is far more extended than the 
redial one. The effective distribution of collocation points (denser distribution in the 
vicinity of the wall) is the key to explaining the accuracy of the method in deter- 
mining heat transfer rates at the wall. Although a non-uniform grid is employed, the 
pseudospectral method does not suffer the stability problems of other methods 
employing non-uniform grids. 
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